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Abstract. The problem of decomposing the symmetrized powers of representations of point 
groups is discussed in detail. Advantage is taken of the fact that each point group representa- 
tion is closely related either to an induced linear character or to a representation of SU(2). 
The theory introduced by Gard in 1973 is developed to cover the symmetrization of induced 
linear characters and also representations induced from a normal subgroup. 

1. Introduction 

In the group-theoretical approach to quantum-mechanical many-body problems the 
bulk of the mathematical effort lies in the identification of the irreducible constituents 
of the Kronecker products of symmetry group representations. In particular, for a 
system of identical bodies, attention is focused on the reduction of the Kronecker powers 
of a single representation. Indeed, whenever the Pauli principle, or one of its generaliza- 
tions is in operation, knowledge is required of the symmetrized powers of group repre- 
sentations carried by various natural subspaces of the tensor power spaces, called 
symmetry classes, which additionally carry primary representations of the symmetric 
group which permutes the sub-system labels. For a simple introduction to these ideas 
and a short list of applications see Bradley and Cracknell (1972) under the index entry 
‘symmetrized squares. . . ’. 

The mathematical problem of calculating the symmetrized powers of group repre- 
sentations, which in the special case of point groups is the subject of this paper, has been 
considered by various authors. In particular, Lewis (1973) and Boyle (1972) have made 
use of the character formula of Weyl (see Weyl 1950, p 331 or Lyubarskii 1960, p 75) to 
show how the totally symmetrized and totally antisymmetrized powers of space group 
and point group representations, respectively, may be computed. Unfortunately these 
must be considered special cases, because, although the Weyl formula may in principle 
be applied wherever characters make sense, its use rarely leads directly to useful formulae 
for the decomposition of a symmetrized power as a direct sum of irreducibles. 

An alternative approach, specifically designed for induced representations, was 
initiated by Mackey (1953) in a paper which dealt with the problem of expressing the 
symmetrized square of an induced representation as a direct sum of induced representa- 
tions. This method was taken up by Bradley and Davies (1970), who explored in more 
detail the computational aspects of its matrix formulation and its application to space 
groups. It was further exploited by Backhouse (1973) in a fresh look at the Herring 
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test for the reality classification of space group representations. More recently, Mackey’s 
method has been fully generalized by Gard (1973a), in the spirit of the Bradley and Davies 
formulation, so that an arbitrary symmetrized power of a finite-dimensional induced 
representation can be written as the direct sum of induced representations. This work 
was analysed more fully for space groups in Gard (1973b). In its general presentation 
this method is rather lengthy, however considerable simplifications occur when the 
representations are induced from linear characters of a normal subgroup. Fortunately 
this is the case for many of the irreducible representations of the three-dimensional point 
groups. 

When the induced representation approach is inappropriate, we find it is frequently 
the case that the Lie group SU(2) can be brought into play. This is so because some 
irreducible point group representations are the restriction of irreducible representations 
of SU(2), which may easily be symmetrized following Gard and Backhouse (1974). 

In this paper we have aimed at giving formulae, or easily applied rules, for calculating 
the irreducible constituents of the symmetrized powers of all of the irreducible representa- 
tions of each of the three-dimensional point groups, thus completing the tabulations 
begun by Boyle. 

The presentation of the paper is as follows. In $ 2  the irreducible point group 
representations, both single- and double-valued, are examined critically and classified 
according to which symmetrization procedure seems the most convenient. The 
categories are the following : (a) an induced linear character; (6) induced from a normal 
subgroup; (c )  the restriction of an irreducible representation of SU(2); ( d )  the inner 
Kronecker product of a linear character with a representation of type (a), (b )  or ( c ) ;  
( e )  the outer Kronecker product of a representation of type (a) ,  (b), (c )  or ( d )  with a 
representation of the inversion group Ci. This listing is exhaustive, but the categories 
are not disjoint. Hence there is scope for choosing a preferred method in each case. 

In Q 3 procedures for dealing with cases (a), (b), (c),  (d) ,  ( e )  are described. In particular 
a special case of the theory of Gard (1973a) is developed to cover cases (a) and (b). This 
is especially simple, and most useful, when the subgroup concerned is normal and of 
prime index. Secondly, formulae are quoted for the symmetrization of the low- 
dimensional representations of SU(2) which are directly relevant to (c).  Finally, two 
special cases of plethysm formulae are given which relate to cases ( d )  and (e).  

The final section contains the results of applying these procedures to point groups. 
Since our emphasis is on general formulae, it will be appreciated that standard point 
group notation is rather ill-suited to our calculations in some cases. We have therefore 
adopted our own notation for the cyclic and dihedral groups. Otherwise the labelling 
will be as found in Bradley and Cracknell(l972). We have considered in detail only the 
proper rotation groups ; those containing improper rotations may be tackled by taking 
advantage of the isomorphisms between them and direct products of those already 
discussed. 

2. Irreducible representations 

2.1. Cyclic groups 

If m is finite, C, is generated by a (ie c,, in usual notation), where am = e, the identity. 
The double group C, is isomorphic to C,,, and has the relations iim = r,  r2, = e, where, 
in concrete terms, r is associated with the element diag{ - 1, - l} of SU(2). 
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The unitary irreducible representations (UIR) of CL we denote by 

~ ' ( 1  = 0, 1 , .  . . ,2m- I), 

where 

2xilt 
x'(ii*) = exp (%). 

Observe that x' gives rise to a single- or double-valued UIR of C, according as 1 is even or 
odd. 

If m is infinite, C, can be identified with the circle group of complex numbers ei4, 
0 6 4 < 2.n. The double group Cm is the multiplicative group of complex numbers 
eiei2, 0 < 4 < 4x. Thus the UIR of C,  are ~ ' ( 1  = 0, f 1 , .  . .) where 

(2.2) XI(ei4/2) = e i I W ,  

As above, x1 gives rise to a single- or double-valued UIR of C, E Cm/{ 1, - I }  according 
as 111 is even or odd. 

2.2. Dihedral groups 

The dihedral group D ,  is the semi-direct product of the normal subgroup C, with a 
2-group { e ,  b). It suffices to note that b acts as the inversion operation on C,. 

The double group DL has Ck as a halving subgroup, and we may write 

Dk = Ck v 6Ck; 

however, Dk is not isomorphic to D 2 ,  since the set { e ,  6) does not form a subgroup of 
order two. Although 6 acts as the inversion operation on CA, we find 6' = I ,  where r 
is the element mentioned in 6 2.1. In concrete terms, 6 can be interpreted as the element 
(-: A) of SU(2), though this is not the standard identification in all cases. 

The little group procedure, based on the subgroup Ck, yields the following UIR: 

41 = t Dk E ~ 2 m - 1  t Dk, (2.3) 

for finite m and 1 = 1,2 , .  . . , m -  1, where x' is defined by (2.1). In addition to these two- 
dimensional UIR, there are four linear characters which are extensions of xo and x". They 
are defined by 

+:(Z) = +X(Z) = f ( G )  = 1 

&6) = -$;(t i)  = 1 
f$Y(ii) = @(Z) = f y l i )  = - 1  

(2.4) 

if m is even 
if m is odd. 4 m  = -436)  = 

Evidently 4', for 1 odd, and $7, &', m odd, are double-valued and the remainder are 
single-valued on D,. 

If m is infinite, (2.3) and (2.4) are valid, provided x' is defined by (2.2), x Z m - '  is inter- 
preted as x-', and li is replaced by 

We remark finally that 4' is the restriction to DL of the UIR D'" of SU(2). Un- 
fortunately, not all the double-valued representations of D,  are related simply to 4'. 

in (2.4). Equations (2.5) are suppressed. 
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2.3. Tetrahedral group T 
In standard notation, the four single-valued UIR of Tare denoted by A, ' E ,  ' E ,  T. The 
first three are linear characters, and the fourth is the restriction to T of the three- 
dimensional representation D' of SO(3). Alternatively, T may be induced from any of 
the non-trivial characters, B, , B,, B 3  of the normal subgroup D , .  

T has three two-dimensional double-valued UIR, denoted by E,  ' F ,  ' F .  We find that 
E = D'IZ 1 T', 'F = E @ , E ,  2 F  = E @ ' E .  

2.4. Octahedral group 0 

0 has two linear characters denoted by A ,  and A , ,  The single-valued two-dimensional 
UIR, denoted by E,  may be induced from either of the linear characters ' E  and ,E  of the 
normal subgroup T. The remaining single-valued UIR, Tl and T2 , are three-dimensional 
and may be constructed in two different ways: either as the induced representations 
Tl = A ,  T 0 and T, = B ,  T 0, where A , ,  B ,  are linear characters of the non-normal 
subgroup D,, or by noting that T, = D' 1 0 and T, = A,@ T, . 

The double-valued UIR of 0 are most easily related to the UIR D'12 and D3" of SU(2). 
In fact E ,  = D'" 1 0', E ,  = E1@A2 and F = D3', 1 0'. Alternatively, F can be 
written as ' E  f 0', ,E t 0', ' F  t 0', t 0', where ' E ,  ' E  are the double-valued 
linear characters of the non-normal subgroup D; , and ' F ,  ' F  are double-valued two- 
dimensional UIR of the normal subgroup T'. 

3. Symmetrization procedures 

3.1. Symmetrized powers of induced linear characters 

In a recent paper, Gard (1973a, to be referred to as I), a procedure was derived for the 
construction of the symmetrized powers of a finite-dimensional induced representation. 
As a preliminary to discussing what simplifications may occur in the general theory, let 
us recall some of the notation and results of I. 

Let A be a representation of a group G with basis { II/ 1 ,  IC/,, . . . , II/,-}. The vector space 
R spanned by ordered n-tuples of functions (I)~,, $ i 2 ,  . . . , is = 1,2, .  . . ,f; s = 1, 
2,. . . , n, is the carrier space for the nth Kronecker power of A. There is an action of the 
permutation group S,, on the positions of the functions in the n-tuple which commutes 
with the action of G. Hence R splits into a direct sum of G x &-invariant subspaces R' in 
one-one correspondence with the UIR of S,,. R' has the important property that it carries 
a representation ( v )  @ [v] of G x S,,, where [v] is a UIR of S,, of dimension f, and ( v )  is 
some UR of G of dimension d,. This with the proviso that R' = {0} if dim A is less than 
the number of rows in the Young's diagram of [VI. 

Now let D be a UR of the subgroup K of G with basis { 4 ' ,  4 , , .  . . , 4d}.  Define 
inductively the double coset decompositions 

G = U K,- ,dSK, (3.1) 
j 

r = 0, 1,. . . , n -  1, where K - ,  = G, KO = K and 

r 

Kr = K n d,,Kd,', 
i =  1 

(3.2) 
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r = 1,. . . , n-  1. Since K ,  depends on the fixed set d,, E id:} ,  i = 1,. . . , I ,  of double coset 
representatives chosen, it is sometimes convenient to give K ,  the superscript (a) which 
denotes the n-tuple (d, "-,, . . . , d,,, d,, = e). Now write 

for I = 0, 1, .  . . , n - 1, where we have suppressed the dependence of the q on (U). Then 
the nth Kronecker power of D t G may be expressed as 

where K , - ,  = Kf2 1, the direct sum ranges over all chains of double coset representa- 
tives (U) and D, is the UR of d,Kd,- defined by 

D,(d,kd,') = D(k) ,  (3.5) 

for all k E K. This is associated with a decomposition of the space Q as @(,)Q(u). That is a 
direct sum decomposition of G-invariant subspaces 

(3.6) 

where, for fixed (U), the sum is over all cr, cr', . . . ; is = 1,2, . . . , d ; s = 0, 1,. . . , n - 1. 
Also the summation is taken to mean the linear span of all the functions appearing to the 
right of it. 

In 0 3 of I, an action of& was defined which permuted the n-tuples (a) and hence the 
subspaces Q(u), causing aggregates of them to form orbits. This naturally led to the sub- 
groups s,,(~) and E,,(a), the former being the stability group of R(a) and the latter the 
stability group of(or) (see equations (3.1H3.6)of I). The direct sum of the spaces belonging 
to the orbit of R(a), called T(u), is G x &-invariant by construction. It is the spaces T(a), 
rather than the Q(u), which split conveniently into subspaces which may be allocated to 
the appropriate symmetry classes. The procedure for obtaining T(a) is to induce from 
K!? up to an intermediate subgroup M(a)-which may be described roughly as Kf! 
augmented by those permutations of S,,(a) not present in E,,(ol). The intermediate space, 
denoted by W(a) in I, is not only invariant under M(a) but also under S,,. The repre- 
sentation carried by W(a) can be split up explicitly so that the resulting subrepresenta- 
tions may be allocated to subspaces, which on further induction to G, remain wholly 
within their predetermined W. In I a construction was given for the group M(a) which 
followed the discovery of the group &(a). In particular, ifs&) = E,,(a), it was found that 
M(a) = KfL and the resulting representations, with their allocation to symmetry 
classes were given in equation (6.28). IfS,,(cc) is strictly greater than E,,(a), the construction 
of M(a) turns on the conclusions of theorem (3.7), and the results concerning these 
representations are contained in equation (6.15), for which we take this opportunity of 
noting the following correction. If cr = (ol , . . . , or) E E,,(a) is regarded as an element of 
S,, then in (6.12) (oPt-Pr-l) should be replaced by (orcrr-l(,). . . where (q+ 1) is the 
length of the cycle of n containing t, with a corresponding change in (6.14). More de- 
tailed analysis has revealed the following theorem, which enables M(a) and s,,(@) to be 
determined simultaneously. 
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Theorem (3.1). 
Let n E Sn(a), then 

r =  1 , . . . ,  n - l , w h e r e p , ~ K y ) , k ~ ~ K , i = O  ,..., n-2;  
(ii) it is possible to choose 

- 1  - 1  
a n  = d a , , 0 ) ~ 0  . * . P n -  I ; 

(3.7) 

(3.8) 

(iii) with this choice of a,, the matrix P has components given by 
r 

Pij = n (ps ) (ks - l ) i s j s*  (3.9) 
s =  I 

Proof. 
(i) By (2.1) of I, (a) - (p)  if 

dar = P r -  I . . . Pod&- 1 ,  (3.10) 

r = 1, . . . , n - 1, where p i  E K?), ki E K ,  i = 0, . . . , n - 2. But if i 2 r,  pi E K y )  < daPKd,' ,  
hence (3.10) may be rewritten as 

(3.1 1) 

r = 1, . . . , n - 1, where k i  E K ,  i = 0, . . . , n - 2. Finally, (3.7) holds since n E &(a) means 
that (a) and 6(a) are equivalent (see 4 3 of I). 

of I, 

dap = ~n - 1 . . ' podprkr - 1 9 

(ii) It follows from (i) that da,co,p;l . . . p n -  - 1  E dancr)Kda;' for all r .  But by theorem (3.6) 

n -  1 

hence result. 
(iii) Substituting (3.8) in equation (6.3) of I, and using (3.7), leads to (3.9). 

Corollary (3.2). 
If K a C, then an may be chosen to be danio, 

Proof. 
The normality of K in Gimplies each KP' = K ,  r = 1, . . . , n - 1. Double coset representa- 
tives become left coset representatives for K in G and hence we may choose p i  = e, 
f o r i =  0, ..., n-1. 

Corollary (3.3). 
If C = K @ B, with K a  C, and the double coset representatives are chosen to lie in B, 
then P = I .  

Proof. 
If n ES,(CL) then da;:o)da,(s) E daSK, for s = 0, 1, .  . . , n - 1 follows from (3.7). But B, which 
consists of double coset representatives, is closed under multiplication, and hence 
da&:o)da,ls) = das ,  for all s. We have already chosen pi = 0, i = 0,. . . , n-1, so now we 
find k, = e, s = 0,. . . , n-2, with the result that P = I .  This concludes the proof. 

In the sequel take K a C, and write C / K  = B. As stated above, double coset repre- 
sentatives are left coset representatives for K in C but they are not necessarily closed under 
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multiplication. Let p : G  -, B be the canonical epimorphism. With each n-tuple (a) of 
elements of G associate an n-tuple ( E )  of elements of B defined by 

(3.12) 

Then we have the following theorem. 

Theorem (3.4). 
Let K a G, G/K = B and let { E }  denote the set of entries in the n-tuple (E) .  If B(a) is the 
largest subgroup of B contained in { E }  with the property that { E }  consists of whole 
cosets of B(a), then M(a) = p-'B(a).  

Proof. 
First note that by corollary (3.2), K and a subset of { a }  generate M(a). 

Let (a) = ( g , ,  . . . , g, ,  . . . , g , ,  . . . , g l ,  g o , .  . . , g o )  where g o  = e and gi  appears ri  
times, i = 0,. . . , t .  Let 7c~S,(a), then we may take a, = din(,,) = g i ,  say. &a) - a 
implies that given j ,  there exists k, dependent on j ,  k ( j )  # k( j ' )  if j # j ' ,  so that 
g ;  ' g k  E g j K  and r j  = rk.  Equivalently we may write 

- 

d g k )  = Pki)P(gj ) ,  (3.13) 

with r j  = r k .  Each gi, which arises in this way from some 7c ES,,(~), provides a one-one 
correspondence between the distinct elements of { E } .  Conversely if gi E { a }  satisfies 
(3.13), then it defines n ~ S , ( a )  with a, = g,. The totality of the distinct p(g,)  satisfying 
(3.13) forms a subgroup B(a) of B and pM(a) = B(a). We must now show that B(a) de- 
composes { E }  and is maximal with respect to this property. 

If g,E {a } ,  then the set A, = { b p ( g , ) : b ~ B ( a ) }  consists of distinct elements of { E } ,  
since K a G, and by (3.13) they appear exactly r ,  times in { E } .  Either the elements of 
B(a) and A,, with their multiplicities, fill { E ) ,  or there exists g,. E { a )  such that 
p(g,.) ff B(a) U A,. It is trivial to show that As,  n @(a) U A,) is empty. Hence { E }  is the 
union of left cosets of B(a) in B. 

Finally, suppose ( E )  may be written as the union of left cosets of a subgroup B' of B, 
where B(a) is contained in 1. Clearly any b E B' satisfies (3.13) and we can define n: ES,,(E) 
such that an = b. We deduce that B' is contained in B(a), hence B(a) is maximal. 

Corollary (3.5). 
If B is cyclic of prime order, then either B(a) = B or B(a) = {e}.  In the first case { E }  = mB 
for some integer m. 

Corollary (3.6). 
Let G = K 0 B, then there exists for each (a) a maximal subgroup &a) of B such that {a )  
consists entirely of left cosets of B(a), and M(a) = K 0 B(a). 

We have described how to generate the group M(a), generally and in special cases, 
so it only remains to examine more closely the symmetrization procedure as it applies to 
induced linear characters. The first point to notice is that each pre-induced space, 
invariant under K,,- l  and indexed by a double coset representative, carries a one- 
dimensional representation. Hence we may apply the theory following equation 
(6.19) of I. Let (a) be a standard n-tuple of type ( A l , .  . . , AJ, leading of course to 
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En(a) = SA, x SA* x . . . x Sar. Then there will be a contribution to the symmetry class 
Sr. only if gv # 0 in 

(3.14) 

where [Ai] denotes the trivial representation of SA,, i = 1,. . . , r. Now Q(a) carries a 
representation of G which we denote by 9, T G, being the summand of (3.4) indexed by 
(a). Hence the representation rf;] of M(a) (see (5.14) and (6.21) of I) is defined by 

rtj(0 = gVf"9Ah (3.15) 

l-t;j(a,) = gv[vl(.) 8 P ( 4  9 (3.16) 

where 1 E Kfi and P(n) is a complex number. It will be recalled that R' carries the direct 
sum of the r[t] 7 G, one (a) from each orbit. In particular if M(u) = KfL T(a)' carries 

Now consider the case when G/K = B is a cyclic group of prime order q, and denote 
the coset representatives of K in G by e,  b, b', . . . , bq-'. Suppose the n-tuple (a) contains 
b', Ai times, i = 0,. . . , q-  1, 1, # 0. By corollary (3.5), if at least one Ai # n/q, then 
S,(a) = E,,(a) = S, x SA, x . . . x Saq - 1. Then M(a) = = K, and T(a)' carries the 
UR gvfv(4, 7 G). The exceptional case occurs when q divides n and every Ai is n/q. 
Evidently b E M ( a )  and M(a) = G. The decomposition is as follows. Possible [VI are 
those for which g, # 0 in 

([).1I O [''I O . . . 8 [&I) T S n  = @ gv[vI, 
V 

fvgv(9a T 69. 

(3.17) 

If k E K ,  then T(a)' carries rf;] defined by 

rftj(k) = gvfv4a(k), (3.18) 

rf:](b) = gvIV] (nb)P(nb), (3.19) 

where nb is in the class [q'"q] of S,. Note that P(nb) = 1 if G = K 0 B, by theorem (3.1) 
(iii). 

The permutation n,, has prime order q, and hence the eigenvalues of [v](nb) are qth 
roots of unity. If we put 0, = exp(hit/q), t = 0, 1,. . . , q - 1, and if [v] (nb) has the 
eigenvalue 0, with multiplicity aiv), then we know the diagonal form of [v](nL) for r = 0, 
1,. . . , q - 1. Indeed, since n b  is a product of disjoint q-cycles, q a prime, all the non- 
trivial powers of n b  have the same cycle structure and hence the same character in the 
representation [VI. A consideration of the diagonal form of [v](nb) and its powers, to- 
gether with the invariance of the character function and the irreducibility of the poly- 
nomial 1 +x+x'  + . . . +xq-', leads to the conclusion that a(:) = &) = . . . = a") q - 1 .  

Hence 

(3.20) 

(3.21) 

In any particular case we may obtain f, and Tr[v](nb) from the character table of S,,, 
thus enabling [V](nb) to be written in diagonal form and the representation r[$ to be 
reduced to a direct sum of one-dimensional UR of G. For example if q = 2 and n is even, 
then [n](nb) = 1 and [In](nb) = (-  1)'"'. If q is odd and q divides n, then xb is an even 
permutation and [n](nb) = [ln](nb) = 1. 

fv = ab" +(q - l)UY), 

TT[V](nb) = Ut ' -U( , . )  = -(q&'-fV). 
1 

q-1 
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3.2. Symmetrized powers of internal and external Kronecker products of a representation 
with a linear character 

Let G be a direct product group, G = G ,  x G, , and let D be a UR of G with the special 
form D = D, @ x, where D, is a UR of G, and x is a linear character of G, . Then 

D['] = @ x". (3.22) 

In particular if G ,  = G2 = H ,  and we restrict to the diagonal subgroup, then (3.22) 
gives a formula for the symmetrized powers of the inner product of a UR of H with a 
linear character of H.  

3.3. Symmetrized powers of SU(2) representations 

Let r be a representation of the point group G given by r = Dj 1 G, where Dj is a UIR of 
SU(2) (or SO(3)). Then rrV1 = (Dj)[" 1 G. Following the recent paper (Gard and 
Backhouse 1974), we may decompose (P')''] into its irreducible constituents. This 
together with the tables (2.7) and (6.6) of Bradley and Cracknell (1972), enables the 
reduction of rrV1 to be completed. We highlight some useful results from Gard and 
Backhouse (1974). 

Let [VI = (v,, v,, . . . , v.) where v, 2 v 2  2 . . . 2 v, and Xy=l v i  = n. Then 

Define D'"] = (D')["], then 

n even {:': nodd. 
D["]= D"+D"-,+ . . .  + 

(3.23) 

(3.24) 

Also 
(D')['l = ~ ~ v l - v 3 l + ~ [ V l - v 3 - 1 1  + . . .  + ~ [ " - " ' -  (D[ V l - v 2 - 1 1  + . . . +D[O]), 

if v4 = 0, but if v4 # 0 there is no contribution to (D')[']. 

(3.25) 

4. Symmetrized powers of point group representations 

In this section we describe the calculations required to obtain the symmetrized powers of 
the UIR of the point groups. It has not been possible to tabulate fully the irreducible 
constituents of every symmetrized power, because the formulae we give often depend on 
such parameters as f,, g,, at ) ,  ay) which must be calculated in each individual case. 

4.1. Cyclic groups 

Take CA as the source for both the single- and double-valued UIR of C,,, . Then, since the 
UIR are one dimensional, there is only a contribution to the totally symmetrized nth 
power, for each n, given by 

(,y = p ,  (4.1) 
where nl must be reduced modulo 2m if m is finite. 
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4.2. Dihedral groups 

TakeD, as the source for both single- and double-valued UIR ofD,. The one-dimensional 
representations, (2.4) and (2.5) if m is finite, but just (2.4) if m is infinite, contribute to 
the totally symmetrized powers only. The results are as follows 

If n = 2r+ 1 

The two-dimensional UIR 

r even 
r odd. 

r even 
r odd, 

r even 
r odd. 

(4.7) 

(4.8) 

are given by (2.3) and the symmetrization procedure is 
based on theorem (3.1) (iii), corollary (3.2), theorem (3.4), corollary (3.5) and equations 
(3.17H3.21). We take G = 0 6 ,  K = Ck and G/K = C,, which is cyclic of prime order. 

We take the elements of the n-tuple (U) to be e, U times, where U # 0, and 6, t' times. 
If U # U, the space T(a)['] carries the UR g,fv(4, t D,) where dm = x ( ~ - ' ) '  is a UIR of 

Ck. Here g, is the frequency of [v] in ([U] @ [VI) t S,, the inducing subgroup being 
S,, x So, u + u  = n. 

The exceptional case is where n is even, U = U = nJ2, so that 4, = zo and M(u) = 0 6 .  
Then T(u)["] carries the UR Trvl defined by 

r["1(51) = g,f,l, (4.9) 

r [ , ] ~ )  = g,[vi (n6) o X Y ~ ) ,  (4.10) 

where 51 E Ch, 716 is in the class (2""). Note that x'n'2(r) = exp(dnJ2). Using (3.20), (3.21) 
we may decompose Trvl as a sum of g,agl UIR 4:, and g,&] UIR 4; if I is even or if 1 is 
odd and nJ2 is even. The frequencies are reversed if 1 is odd and nJ2 is odd. In particular 
if [VI = [n], akl = 1, U?] = 0, but if [VI = [l"], a!] = 1 ,  up1 = 0 if n/2 is even and vice 
versa if n/2 is odd. 

The above is valid when m is infinite with suitable interpretation. 
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4.3. Tetrahedral group 

The one-dimensional representations of T only contribute to the totally symmetrized 
nth power. 

A["] = A ;  (4.11) 

A if 3/n, 
(4.12) 

' E  if 3/n-2; 

A if 3/n, 

' E  if 3/n-1. 
(4.13) 

Since T = D' 1 T we may use the theory of 0 3.3 to decompose (T)["] .  This approach 
is also applicable to the double-valued UIR, so from E = D'" T', we obtain 

(E)["] = D + ( V l - V Z )  1 T ,  (4.14) 

if v 3  = 0, and is empty otherwise. From (3.22) we find 

('F)['] = (E)["] @ (ZE)["],  

('F)["] = (E)['] @ ('E)["], 

which may be reduced with the aid of (4.12H4.14). 

(4.15) 

(4.16) 

4.4. Octahedral group 

Symmetrizing the linear characters gives 

(A')["] = A', (4.17) 

(4.18) 

The two-dimensional single-valued UIR of 0 may be expressed as E = ' E  t 0 
where ' E  is a linear character of T. Since 0 = T 0 C, we may apply the strongest form 
of the theory of g(3.1). Let Cz = {e, c ) ,  then we may assume that an n-tuple (a) contains 
e, U times, U # 0, and c, v times, u + v  = n. If U # U, T(a)["] carries the UR g , f v ( 4 ,  7 O), 
where 4e = ('E)"('E)". If n is even and U = U = 42,  then 4x = A,  M(a) = 0. Hence 
Trvl is given by 

(4.19) 

where t E T and n, is in the class (2""). The matrix [VI (nc) has already been analysed in 
0 (4.2). In particular 

rrnl = A' ,  (4.20) 

A' ,  nJ2even 
r['"l = {A', n/2 odd. 

(4.21) 
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The remaining UIR are best symmetrized using the theory of 0 3.3. Thus 

(TI)['] = (D')'"] 1 0, 
(Tz)[V1 = 7-[1"1 @ A';], 

(E,)"] = (Dl/Z)[V] 1 0 1 ,  

( E , ) [ V l  = (E,)[']  @ (A,)["], 
(F)['I = (DW)['l 1 0'. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

4.5. Real representations 

In some applications it is necessary to work with representations that are irreducible 
over the real field rather than the complex field. We refer to Lyubarskii (1960) for a 
discussion of the importance of real representations to the theory of second-order phase 
transitions. 

To symmetrize such representations, for instance ' E @ ' E  of T, we would employ 
the formula 

(4.27) 

where [VI, [v'], [v"] are UIR of S,,, S,,,, S,,,,, respectively, where n = n'+n", and o is the 
frequency of [VI in ([v']@[v'']) t S,,, induced from the subgroup S,,. xS,,,.. This is an easy 
consequence of the Weyl formula and is the basis for Gard and Backhouse (1974). 
Equation (4.27) is especially simple to employ if L, M are one dimensional, then o takes 
the value 1 or 0, depending on whether the Young's diagram of [VI may or may not be 
built from those of [n'] and [n"]. 

(L@M)['l = c o([v], [v'], [v"])(L["'l@M[""l), 
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